The mean curvature flow for isoparametric submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mean Curvature Flow for Isoparametric Submanifolds

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...

متن کامل

The Mean Curvature Flow Smoothes Lipschitz Submanifolds

The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...

متن کامل

Mean Curvature Flow of Pinched Submanifolds to Spheres

The evolution of hypersurfaces by their mean curvature has been studied by many authors since the appearance of Gerhard Huisken’s seminal paper [Hu1]. More recently, mean curvature flow of higher codimension submanifolds has also received attention. In this paper we prove a result analogous to that of [Hu1] for submanifolds of any codimension. Let F0 : Σn → Rn+k be a smooth immersion of a compa...

متن کامل

Singularity of Mean Curvature Flow of Lagrangian Submanifolds

In this article we study the tangent cones at first time singularity of a Lagrangian mean curvature flow. If the initial compact submanifold Σ0 is Lagrangian and almost calibrated by ReΩ in a Calabi-Yau n-fold (M,Ω), and T > 0 is the first blow-up time of the mean curvature flow, then the tangent cone of the mean curvature flow at a singular point (X0, T ) is a stationary Lagrangian integer mul...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2009

ISSN: 0012-7094

DOI: 10.1215/00127094-2009-009